Enrollment No: ____

Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Group Theory

Subject Code: 4SC0	5GTC1	Branch: B.Sc. (Mathematics)					
Semester: 5	Date: 23/03/2018	Time: 10:30 To 01:30	Marks: 70				

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	Give an example of normal subgroup.	(01)
b)	Give an example of a non-commutative group.	(01)
c)	True or False: $(z_n, +_n)$ is a group.	(01)
d)	If $G = \{1, i, -1, -i\}$ is a group under multiplication then find $o(i)$.	(01)
e)	Define: Group	(02)
f)	Define: Isomorphism of group	(02)
g)	Find all the subgroups of $(Z_8, +_8)$.	(02)
h)	Prove that $o(a^p) \le o(a), p \in Z$ for any element <i>a</i> in group G	(02)
i)	Is $(Z_7, +_7)$ cyclic group? If yes then find all generators of it.	(02)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- a) Prove that the set $\left\{a+b\sqrt{2} \mid a, b \in Q; a^2+b^2 \neq 0\right\}$ of R is a group under multiplication of (05) two real numbers.
- **b**) For a subgroup *H* of *G* and for $a, b \in G$. Show that $Ha = Hb \Leftrightarrow ab^{-1} \in H$. (05)
- c) Using Euler's theorem, find the remainder obtained on dividing 3^{256} by 14. (04)

Q-3 Attempt all questions

- a) State and prove Lagrange's theorem. (07)
- b) State and prove the first fundamental theorem of Homomorphism. `` (07)

Page 1 of 2

Q-4 Attempt all questions

Y '								
a)	A subgroup of H of G is a normal subgroup of G iff $aHa^{-1} \subset H$, for $a \in G$							
b)	Prove that any two infinite cyclic groups are isomorphic.							
c)) $H = \{A \in GL(2; R) A \text{ is rational number} \}$ is a subgroup under matrix multiplication							
	of $GL(2; R)$.							
Q-5	Attempt all questions	(14)						
a)	Let <i>H</i> is a subgroup of <i>G</i> iff $ab^{-1} \in H$ for $\forall a, b \in H$.	(05)						
b)	The set $Z = \{x \in G xy = yx, for \forall y \in G\}$ is a subgroup of <i>G</i> and also prove that if	(05)						
	$a \in \mathbb{Z}$ then $N(a) = G$.							
c)	Check whether that $\{1, 5, 7, 11\}$ is a subgroup of (Z_{12}^*, \times_{12}) or not, where \times_{12} is	(04)						
	multiplication modulo 12.							
Q-6	Attempt all questions							
a)	Show that the set $Q \setminus \{-1\}$ is an abelian group with respect to the binary operation $a * b = a + b + ab$, for all $a, b \in G$.	(05)						
b)	Obtain all generators, all subgroups of $(Z_{18},+_{18})$ and draw prepare lattice diagram.	(05)						
c)	Let $\phi: (G, *) \rightarrow (G', \Delta)$ is a Homomorphism. If H is a normal subgroup of G	(04)						
	then $\phi(H)$ is a normal subgroup of G'.							

Q-7 Attempt all questions

a)	State and prove Euler's theorem.	(05)
b)	If K is a subgroup of G and H is a normal subgroup of G then prove that	(05)
	i) $K \cap H$ is a normal subgroup of K and	
	ii) <i>KH</i> is a subgroup of <i>G</i> .	

c) Find order of
$$f^2$$
 and $f \circ g$, where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 5 & 2 & 8 & 7 & 6 & 4 \end{pmatrix}; g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 5 & 7 & 8 & 6 \end{pmatrix}$. (04)

Q-8 Attempt all questions

a)	Prove that order of permutation is the least common multiple of the length of its									(07)			
	disjo	int cycles.											(0 7)
1.)			~			/ \ .	~ .			_			

b) A cyclic group *G* with generators $\langle a \rangle$ is finite iff there exist a positive integer k such (07) that $a^k = e$.

Page 2 of 2

